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1. Introduction

In present paper, we consider wave functions of B-model on a Calabi-Yau threefold in

various polarizations and relations between these wave functions.

One can interpret genus 0 B-model on a Calabi-Yau threefold X as a theory of vari-

ations of complex structures. The extended moduli space of complex structures, the

space of pairs (complex structure, holomorphic 3-form), can be embedded into the middle-

dimensional cohomology H3(X, C) as a lagrangian submanifold. The B-model for arbitrary

genus coupled to gravity (the B-model topological string) can be obtained from genus 0

B-model by means of quantization; the role of Planck constant is played by λ2 where λ is

the string coupling constant. (This is a general statement valid for any topological string.

It was derived by Witten [12] from worldsheet calculation of [2]. ) The partition function of

B-model is represented by wave function depending on choices of polarization in H3(X, C).

If the polarization does not depend holomorphically on the points of the moduli space

of complex structures, then the dependence of wave function of the points of the moduli

space is not necessarily holomorphic. (The t̄-dependence is governed by the holomorphic

anomaly equation.) This happens, in particular, for a polarization that we call complex

hermitian polarization. Other papers use the term “holomorphic polarization” for a com-

plex hermitian polarization in the sense of present paper; we reserve the term “holomorphic

polarization” for a polarization that depends holomorphically on the points of the moduli

space of complex structures. The holomorphic polarization in our sense was widely used in

mirror symmetry; this polarization and its p-adic analog were used to analyze integrality

of instanton numbers (genus 0 Gopakumar-Vafa invariants) [8].
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The main goal of present paper is to study wave functions in various polarizations,

especially in holomorphic polarization. We believe that Gopakumar-Vafa invariants for

any genus can be defined by means of p-adic methods and this definition will have as a

consequence integrality of these invariants. The present paper is a necessary first step in

the realization of this program. It served as a basis for a conjecture about the structure

of Frobenius map on p-adic wave functions formulated in [10]; this conjecture implies

integrality of Gopakumar-Vafa invariants.

We begin with a short review of quantization of symplectic vector space (section 2).

In section 3, 4 and 5 we use the general results of section 2 to obtain relations between the

wave functions of B-model in real, complex hermitian and holomorphic polarizations. In

section 6 we compare these wave functions with worldsheet calculations of [2].

The holomorphic anomaly equations were recently studied and applied in [1], [5], [6],

[9], [11]. Some of equations in our paper differ slightly from corresponding equations in [1],

[11]. However, this difference does not affect any conclusions of these papers.
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2. Quantization

We consider a real symplectic vector space V and a symplectic basis of V . (A symplectic

structure can be considered as a skew symmetric non-degenerate bilinear form < , > on

V ; we say that eα, eβ , α, β = 1, · · · , n = dim(V ) is a symplectic basis if < eα, eβ >=<

eα, eβ >= 0, < eα, eβ >= δα
β .) It is well known that for every symplectic basis e = {eα, eβ},

one can construct a Hilbert space He; these spaces form a bundle over the space M of all

symplectic bases and one can construct a projectively flat connection on this bundle.1 The

situation does not change if we consider, instead of a real basis in V , a basis {eα, eα} in

the complexification of V requiring that eα be complex conjugate to eα.

The picture we described above is the standard picture of quantization of a symplectic

vector space. The choice of a basis in V specifies a real polarization; the choice of a

basis in its complexification determines a complex polarization. The quantum mechanics

lives in Hilbert space of functions depending on n = 1
2dimV variables. To construct this

Hilbert space, we should fix a polarization, but Hilbert spaces corresponding to different

polarizations can be identified up to a constant factor. In semiclassical approximation,

vectors in Hilbert space correspond to lagrangian submanifolds of V .

Let us describe the Hilbert space He for the case when e = {eα, eβ} is a symplectic

basis of V . An element of V can be represented as a linear combination of vectors eα, eβ

1One says that a connection ∇ on a vector bundle over a space B is projectively flat if [∇X ,∇Y ] =

∇[X,Y ] + C, where C is a constant depending on X, Y . For an infinite dimensional vector bundle over a

compact manifold B with a unitary connection, this means that for every two points e, ẽ of B connected by

a continuous path in B, there is an isomorphism between the fibers He and Hẽ defined up to multiplication

by a constant; this isomorphism depends on the homotopy class of the path. We say that a section Φ of

the vector bundle is projectively flat if ∇XΦ = CXΦ where CX is a scalar function on the base.
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with coefficients xα, xβ. After quantization, xα and xβ become self-adjoint operators x̂α,

x̂β obeying canonical commutation relations(CCR):

[x̂α, x̂β ] = [x̂α, x̂β ] = 0, [x̂α, x̂β] =
~

i
δβ
α (2.1)

We define He as the space of irreducible unitary representation of canonical commutation

relations.

A (linear) symplectic transformation transforms a symplectic basis {eα, eα} into sym-

plectic basis {ẽα, ẽα}:

ẽα = Mα
β eβ + Nαβeβ

ẽα = Rαβeβ + S
β
αeβ.

(2.2)

This transformation acts on x̂α, x̂α as a canonical transformation, i.e. the new operators
ˆ̃xα, ˆ̃xα also obey CCR; they are related to x̂α, x̂α by the formula:

x̂α = Nβα ˆ̃xβ + Sα
β
ˆ̃xβ

x̂α = M
β
α

ˆ̃xβ + Rβα
ˆ̃xβ.

(2.3)

It follows from the uniqueness of unitary irreducible representation of CCR that there

exists a unitary operator T obeying

ˆ̃xα = T x̂αT−1,
ˆ̃xα = T x̂αT−1.

(2.4)

This operator T is defined up to a constant factor relating He and Hẽ. In the case when

{ẽα, ẽα} is an infinitesimal variation of {eα, eα}, i.e. ẽ = e + δe where

δeα = mα
βeβ + nαβeβ,

δeα = rαβeβ + s
β
αeβ ,

(2.5)

we can represent the operator T as 1 + δT , where

δT = −
1

2~
nαβx̂αx̂β +

1

~
mβ

αx̂αx̂β −
1

2~
rαβx̂αx̂β + C. (2.6)

This formula determines a projectively flat connection on the bundle with fibers He and

the base consisting of all symplectic bases in V . A quantum state specifies a projectively

flat section of this bundle.

The irreducible unitary representation of CCR can be realized by operators of multi-

plication and differentiation on the space of square integrable functions of x1, · · · , xn; one

can take x̂αΨ = xαΨ and x̂αΨ = ~

i
∂Ψ
∂xα . Then a projectively flat connection takes the form:

δΨ =
~

2
nαβ ∂2Ψ

∂xα∂xβ
+ mβ

αxα ∂Ψ

∂xβ
−

1

2~
rαβxαxβΨ + CΨ. (2.7)

We will call elements of He and corresponding functions of x1, · · · , xn wave functions.

It is important to notice that in Equation (2.7) instead of square integrable functions,

we can consider functions Ψ(x1, · · · , xn) from an almost arbitrary space E ; the only essential
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requirement is that the multiplication by xα and differentiation with respect to xα should

be defined on a dense subset of E and transform this set into itself.

Sometimes it is convenient to restrict ourselves to the space of functions of the form

Ψ = exp(Φ
~
) where Φ =

∑
ϕn~

n is a formal series with respect to ~ (semiclassical wave

functions). Rewriting (2.7) on this space we obtain

δΦ =
1

2
nαβ

(
~

∂2Φ

∂xα∂xβ
+

∂Φ

∂xα

∂Φ

∂xβ

)
+ mβ

αxα ∂Φ

∂xβ
−

1

2
rαβxαxβ + ~C.

Let B be the set of all symplectic bases in the complexification of V . We consider the

total space of a bundle over B as the direct product B × E . One can use Equation (2.7)

to define a projectively flat connection on this vector bundle. (The coefficients of infinites-

imal variation (2.5) of the basis in V must be real; if we consider {eα, eα} as a basis of

complexification of V , the coefficients of infinitesimal variation obey the same conditions

nαβ = nβα, rαβ = rβα,mα
β + s

β
α = 0, but they can be complex.)

Notice, however that in the real case we are dealing with unitary connection; the

operator Te,ẽ that identifies two fibers (up to a constant factor) always exists. In complex

case, the equation for projectively flat section can have solutions only over a part of the set

of symplectic bases. (Recall that the fibers of our vector bundles are infinite-dimensional.)

It is easy to write down simple formulas for the operator Te,ẽ in the case when Nαβ = 0

or Rαβ = 0. In the first case we have

Te,ẽ(Ψ)(xα) = exp

(
−

1

2~
(RM−1)αγxαxγ

)
Ψ(Sα

β xβ), (2.8)

in the second case

Te,ẽ(Ψ)(xα) = exp

(
−

~

2
(MNT )αγ ∂2

∂xα∂xγ

)
Ψ(Sα

β xβ). (2.9)

Combining Equations (2.8) and (2.9), we obtain an expression for Te,ẽ that is valid when

M and S are non-degenerated matrices,

Te,ẽΨ(xα) = exp

(
−

1

2~
(RM−1)αγxαxγ

){
exp

(
−

~

2
(MNT )αγ ∂2

∂xα∂xγ

)[
Ψ((M−1)αβxβ)

]}
.

(2.10)

Using the expression (2.10) and Wick’s theorem, it is easy to construct diagram tech-

niques to calculate Te,ẽe
F .

Recall that Wick’s theorem permits us to represent an expression of the form∫
eAeV (x)dx where A is a quadratic form and V (x) does not contain linear and quadratic

terms as a sum of Feynman diagrams:

∫
exp

(
1

2
aijx

ixj

)
eV (x)dx = eW (2.11)

where W is a sum of connected Feynman diagrams with propagator aij (inverse to aij)

and with vertices determined by V (x). Using this fact and Fourier transform we obtain a

diagram technique for Te,ẽe
F .
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It follows from this statement that the action of Te,ẽ on the space of semiclassical wave

functions is given by rational expressions. This means that the action can be defined over

an arbitrary field (in particular, over p-adic numbers).

The above statements can be reformulated in the language of representation theory.

Assigning to every symplectic transformation (2.2) a unitary operator T defined by (2.4)

we obtain a multivalued representation of the symplectic group Sp(n, R) and corresponding

Lie algebra sp(n, R) (metaplectic representation). The representation of the Lie algebra

sp(n, R) can be extended to a representation of its complexification sp(n, C) in an obvious

way. However, the metaplectic representation of Sp(n, R) cannot be extended to a repre-

sentation of Sp(n, C) because Sp(n, C) is simply connected and therefore it does not have

any non-trivial multivalued representations. (See Deligne [4] for more detailed analysis.)

3. B-model

From the mathematical viewpoint, the genus 0 B-model on a compact Calabi-Yau threefold

X is a theory of variations of complex structures on X. Let us denote by M the moduli

space of complex structures on X. For every complex structure, we have a non-vanishing

holomorphic (3, 0)-form Ω on X, defined up to a constant factor. Assigning the set of

forms λΩ to every complex structure we obtain a line bundle L over M. The total space of

this bundle, i.e. the space of all pairs (complex structure on X, form λΩ), will be denoted

by M̃. Every form Ω specifies an element of H3(X, C) (middle-dimensional cohomology

of X) that will be denoted by the same symbol. Notice that Ω depends on the complex

structure on X, but H3(X, C) does not depend on complex structure. More precisely,

the groups H3(X, C) form a vector bundle over M and this bundle is equipped with

a flat connection ∂a (Gauss-Manin connection). In other words, the groups H3(X, C)

where X runs over small open subset of M are canonically isomorphic. However, the

bundle at hand is not necessarily trivial: the Gauss-Manin connection can have non-trivial

monodromies. Going around a closed homotopically non-trivial loop γ in M, we obtain a

(possibly) non-trivial isomorphism Mγ : H3(X, C) → H3(X, C). The set of all elements of

H3(X, C) corresponding to forms Ω constitutes a lagrangian submanifold L of H3(X, C).

(The cup product on H3(X, C) taking values in H6(X, C) = C specifies a symplectic

structure on H3(X, C). The fact that L is lagrangian follows immediately from the Griffiths

transversality.) We can also say that we have a family of lagrangian submanifolds Lτ ⊂

H3(Xτ , C) where H3(Xτ , C) denotes the third cohomology of the manifold X equipped

with the complex structure τ ∈ M. Notice that the Lagrangian submanifold L is invariant

with respect to the monodromy group (the group of monodromy transformations Mγ).

The B-model on X for an arbitrary genus can be obtained by means of quantization

of genus 0 theory, the role of the Planck constant is played by λ2, where λ is the string

coupling constant. (More precisely, we should talk about B-model coupled to gravity or

about B-model topological string.) Let us fix a symplectic basis {eA, eA} in the vector space

H3(Xτ , C). Every element ω ∈ H3(Xτ , C) can be represented in the form ω = xAeA+xAeA,

where the coordinates xA, xA can be represented as xA =< eA, ω >, xA = − < eA, ω >.

Quantizing the symplectic vector space H3(Xτ , C) by means of polarization {eA, eA}, we

– 5 –
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obtain a vector bundle H with fibers He. (It would be more precise to denote the fiber by

Hτ,e stressing that a point of the base of the bundle H is a pair (τ, e) where τ ∈ M and e

is a symplectic basis in H3(Xτ , C), however, we will use the notation He, having in mind

that the notation e for the basis already includes the information about the corresponding

point τ = τ(e) of the moduli space M.) As usual, we have a projectively flat connection

on the bundle H. Let us denote by B the space of all symplectic bases in the cohomology

H3(Xτ , C) where τ runs over the moduli space M. Then the total space of the bundle H

can be identified with the direct product B × E , where E stands for the space of functions

depending on xA. Let us suppose that the basis {eA, eA} depends on the parameters

σ1, · · · , σK and

∂ie
A = mA

BeB + nABeB

∂ieA = rABeB + sB
AeB ,

(3.1)

where in the calculation of the derivatives ∂i = ∂
∂σi , we identify the fibers He by means of

Gauss-Manin connection. Then a projectively flat section Ψ(xA, σi, λ) satisfies the following

equation

∂Ψ

∂σi
=

[
−

1

2
λ−2rABxAxB + mA

BxB ∂

∂xA
+

1

2
λ2nBC ∂2

∂xB∂xC
+ Ci(σ)

]
Ψ(xA, σi, λ). (3.2)

This follows immediately from Equation (2.7). (Recall that the wave function Ψ depends

on half of coordinates on the symplectic basis {eA, eA}.)

The wave function of the B-model topological string is a projectively flat section Ψ of

the bundle H that in semiclassical approximation corresponds to the lagrangian submani-

fold L coming from genus 0 theory. Of course, such a section is not unique and one needs

additional assumptions to determine the wave function.

Notice that the right object to consider in B-model is the wave function Ψ(x, e, λ)

defined as a function of xA and polarization e = {eA, eA}. However, it is convenient to

work with Ψ restricted to certain subset of the set of polarizations. In particular, we can fix

an integral basis {gA(τ), gA(τ)} in H3(Xτ , C) that varies continuously with τ ∈ M. (The

integral vectors of H3(Xτ , C) are defined as vectors in the image of integral cohomology

H3(Xτ , Z) in H3(Xτ , C).) It is obvious that the vectors {gA, gA} are covariantly constant

with respect the Gauss-Manin connection, therefore we can assume that in this polarization

the wave function does not depend on the point of moduli space. It can be represented in

the form

Ψreal(x
A, λ) = exp

[ ∞∑

g=0

λ2g−2Fg(x
A)

]
, (3.3)

where Fg is the contribution of genus g surfaces. The leading term in the exponential

as always specifies the semiclassical approximation; it corresponds to the genus zero free

energy F0(x
A). In the next section, we will calculate the transformation of the wave

function Ψ from the real polarization to some other polarizations. It is important to

emphasize that the Gauss-Manin connection can have non-trivial monodromies, hence the

integral basis {gA(τ), gA(τ)} is a multivalued function of τ ∈ M. The quantum state

represented by the wave function Ψreal should be invariant with respect to the monodromy

– 6 –
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transformation Mγ ; in other words, one can find such numbers cγ that

M̃γΨreal = cγΨreal, (3.4)

where M̃γ stands for the transformation of wave function corresponding to the symplectic

transformation Mγ (in other words M̃γ corresponds to Mγ under metaplectic representa-

tion). The condition (3.4) imposes severe restrictions on the state Ψreal, but it does not

determine Ψreal uniquely.

In the next section, we will calculate the transformation of the wave function Ψ from

the real polarization to some other polarizations.

4. Complex hermitian polarization

Let us introduce special coordinates on M and M̃. We fix an integral symplectic basis

g0, ga, ga, g0 in H3(X, C). (This means that the vectors of symplectic basis gA, gA belong

to the image of cohomology with integral coefficients H3(X, Z) in H3(X, C). We use small

Roman letters for indices running over the set {1, 2, · · · , r = h2,1} and capital Roman

letters for indices running over the set {0, 1, · · · , r = h2,1}.) Then special coordinates of

M̃ are defined by the formula

XA =< gA,Ω > .

Recall that dimC M = h2,1, dimC M̃ = dimC M + 1 = 1
2 dimC H3(X, C). Hence, we have

the right number of coordinates.

The functions xA =< gA, > and xA = − < gA, > define symplectic coordinates on

H3(X, C); on the lagrangian submanifold L we have

xA =
∂F0(x

A)

∂xA
,

where the function F0 (the generating function of the lagrangian submanifold L) has the

physical meaning of genus 0 free energy. Notice that the lagrangian submanifold L is

invariant respect to dilations (this is a consequence of the fact that Ω is defined only up to

a factor), and it follows that F0 is a homogeneous function of degree 2.

Identifying M̃ with the lagrangian submanifold L we see that the functions xA on L

are special coordinates on M̃ .

If two points of M̃ correspond to the same point of M (to the same complex structure),

then the forms Ω are proportional; the same is true for the special coordinates XA. This

means that XA can be regarded as homogeneous coordinates on M. We can construct

inhomogeneous coordinates t1, · · · , tr by taking ti = Xi

X0 , i = 1, · · · , h2,1. One can consider

the free energy as a function f0(t
1, · · · , tr); then

F0(X
0, · · · ,Xr) = (X0)2f0

(
X1

X0
, · · · ,

Xr

X0

)
.

Let us work with the special coordinates XA =< gA,Ω > on M̃ and coordinates

ta = Xa

X0 on M. One can say that we are working with homogeneous coordinates X0, · · · ,Xr

– 7 –
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assuming that X0 = 1. We define cohomology classes Ωa on a Calabi-Yau manifold X using

the formula

Ωa = ∂aΩ + ωaΩ,

where ωa are determined from the condition Ωa ∈ H2,1 and ∂a (a = 1, · · · , r = h2,1) stands

for the Gauss-Manin covariant derivatives with respect to the special coordinates ta = Xa

X0

on M. Representing Ω as XAgA +∂AF0g
A and taking into the account that gA and gA are

covariantly constant, we obtain

∂aΩ = ga + ∂a∂BF0g
B = gA + τaBgB .

(Recall that it follows from the Griffiths transversality that ∂aΩ ∈ H3,0 + H2,1. Every

element of H3,0 is represented in the form ωΩ; this follows from the relation H3,0 = C.)

Now we can define a basis of H3(X, C) consisting of vectors (Ω,Ωa,Ωa,Ω). (It is

obvious that (Ω,Ωa) span H3,0 +H2,1. Similarly, Ωa,Ω span H2,1 +H0,3.) Let us introduce

the notation

e−K = −i < Ω,Ω >= i

(
X

A ∂F0

∂XA
− XA ∂F0

∂XA

)
. (4.1)

(The function K can be considered as a potential of a Kähler metric on M.) Then we can

calculate Ωa using the relation that < Ωa,Ω >= 0; we obtain

Ωa = ∂aΩ − ∂aKΩ.

We can relate the basis {Ω,Ωa,Ωa,Ω} to the integral symplectic basis {gA, gA} by the

following formulas

Ω = XAgA +
∂F0

∂XA
gA, Ωa = ga + ∂2F0

∂Xa∂XB gB − ∂aK(XAgA + ∂F0

∂XA gA), (4.2)

Ω = X
A
gA +

∂F0

∂XA
gA, Ωa = ga + ∂2F0

∂Xa∂XB gB − ∂aK(XAgA + ∂F0

∂XA gA). (4.3)

The symplectic pairings between {Ω,Ωi,Ωi,Ω} are

< Ω,Ω >= −ie−K , < Ωi,Ωj >= −iGīje
−K ,

where Gij̄ is a Kähler metric on M defined by Gij̄ = ∂j∂iK. As the commutation relations

are not the standard one, we introduce the following cohomology classes

Ω̃i = iGij̄eKΩj, Ω̃ = ieKΩ.

Due to the relations

< Ω̃,Ω >= 1, < Ω̃i,Ωj >= δ
j
i ,

we can say that {Ω,Ωa, Ω̃
a, Ω̃} constitutes a symplectic basis, which specifies a complex

hermitian polarization.

Directly differentiating the above expressions with respect to the parameters ta and

t̄a, we have

∂iΩ = Ωi − ∂iKΩ, ∂iΩj = −∂iKΩj + Γk
ijΩk + iCijkΩ̃

k,

∂iΩ̃ = ∂iKΩ̃, ∂iΩ̃
j = ∂iKΩ̃j −

∑

k

Γk
ijΩ̃

k − Ω̃δij ;
(4.4)
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where Γk
ij is the Christoeffel symbol for the Kähler metric Gij̄ . And

∂iΩ = 0, ∂iΩj = GījΩ,

∂iΩ̃ = −GījΩ̃
j, ∂iΩ̃

j = −ie2KC
jk

ī Ωk.
(4.5)

Applying (3.2), we obtain from (4.4), (4.5) equations governing the dependence of the state

Ψ(xI , ti, t̄i, λ) on ti, t
i
(holomorphic anomaly equation).

∂Ψ

∂t̄i
=

[
1

2
λ2e2KC īj̄k̄G

j̄jGk̄k ∂2

∂xi∂xj
+ Gījx

j ∂

∂x0
+ Ci

]
Ψ, (4.6)

∂Ψ

∂ti
=

[
x0 ∂

∂xi
− ∂iK

(
x0 ∂

∂x0
+ xj ∂

∂xj

)
− Γk

ijx
j ∂

∂xk
−

1

2
λ−2Cijkx

jxk + Di

]
Ψ. (4.7)

Notice that usually these equations are written with Ci = 0,Di = 0. This is possible

if we consider only one of these equations; fixing Ci or Di corresponds to (physically

irrelevant) choice of normalization of the wave function. However, in general it is impossible

to assume that Ci = 0,Di = 0. (We can eliminate Ci or Di changing the normalization of

the wave function, but we cannot eliminate both of them.) Let us emphasize that Ci and

Di are constraint by the requirement that (4.6) has a solution.

5. Holomorphic polarization

Let us start again with the integral symplectic basis {g0, ga, g
a, g0}. We will normalize the

form Ω requiring that < g0,Ω >= X0 = 1. We would like to define a symplectic basis in

the middle dimensional cohomology that depends holomorphically on the points of moduli

space. Namely, we will consider the following basis in H3(X, C),

e0 = g0,

ea = ga − tag0,

ea = ∂aΩ,

e0 = Ω = g0 + Xaga + ∂aF0g
a + ∂0F0g

0,

where ∂a stands for the Gauss-Manin connection. It is easy to check that this basis is

symplectic.

Using the above relations, we obtain an expression of the new basis in terms of the

integral symplectic basis gA, gA,

e0 = g0

ea = ga − tag0,

e0 = g0 + taga +
∂f0

∂ta
ga +

(
2f0 − ta

∂f0

∂ta

)
g0, (5.1)

ea = ga +
∂2f0

∂ta∂tb
gb +

(
∂f0

∂ta
− tb

∂2f0

∂ta∂tb

)
g0.
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Let qA, qA denote the coordinates on the basis gA, gA, and εA, εA the coordinates on the

basis eA, eA. Equation (2.8) permits us to relate the wave function in real polarization to

the wave function in our new basis (in holomorphic polarization)

Ψhol(ε
I , ti, λ) = e−

1
2
λ−2RABεAεB

Ψreal(ε
0, εi + tiε0, λ), (5.2)

where R is a the matrix (
2f0

∂f0

∂ta

∂f0

∂ta
∂2f0

∂ta∂tb

)
.

Notice that Ψhol is defined up to a t-dependent factor; we use Equation (5.2) to fix this

factor.

Using that g0, ga, ga, g0 are covariantly constant with respect to the Gauss-Manin con-

nection ∂a, we see that

∂be0 = eb, ∂bea = Cabce
c

∂be
a = δabe

0, ∂be
0 = 0,

(5.3)

where Cabc = ∂a∂b∂cf0. Applying Equation (3.2), we obtain from Equation (5.3) the

dependence of the state Ψhol(ε
A, ti, λ) on the coordinates t1, · · · , th

∂Ψhol(ε
A, ti, λ)

∂ta
=

(
ε0 ∂

∂εa
−

1

2
λ−2Cabcε

bεc + σa(t)

)
Ψhol(ε

A, ti, λ). (5.4)

The function Ψhol defined by the Equation (5.2) obeys Equation (5.4) with σa = 0. We

remark that because our basis is holomorphic, the state Ψ does not depend on antiholo-

morophic variables t̄i. Therefore Equation (5.4) is the only equation the state Ψhol(εi, t
i, λ)

has to satisfy. This equation can be easily solved. The solution can be written as follows,

Ψ = exp(W1 + W2),

W1 = W (ε0, ε0ta + εa), (5.5)

W2 = −λ−2

(
1

2

∂af0

∂ti∂tj
εiεj +

∂f0

∂ti
εiε0 + f0(ε

0)2
)

,

here W is an arbitrary function of h2,1 + 1 variables.

Comparing the above expression with Equation (5.2), we obtain

exp(W ) = Ψreal. (5.6)

Let us consider now the B-model in the neighborhood of the maximally unipotent

boundary point. We choose g0 as covariantly constant cohomology class that can be ex-

tended to the boundary point and we define ga as covariantly constant cohomology classes

having logarithmic singularities at the boundary point. The special coordinates coincide

with the canonical coordinates and the basis {eA, eA} coincides with the basis that is widely

used in the theory of mirror symmetry. (See [3], section 6.3). This can be derived, for ex-

ample, from the fact that the Gauss-Manin connection described by the formula (5.3 ) has

the same form in both bases.
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6. Partition function of B-model

The partition function Ψ of the topological sigma model on a Calabi-Yau threefold X (and

more generally of twisted N = 2 superconformal theory) can be represented as Ψ = eF ,

where

F =
∑

g

λ2g−2Fg(t, t̄), (6.1)

and Fg has a meaning of contribution of surfaces of genus g to the free energy. The

correlation functions C
(g)
i1,··· ,in

can be obtained from Fg by means of covariant differentiation.

Notice that in Equation (6.1) we can consider t and t̄ as independent complex variables.

The covariant derivatives with respect to t coincide with ∂
∂ti

in the limit when t̄ → ∞ and

t remains finite.

It is convenient to introduce the generating functional of correlation functions

W (λ, x, t, t̄) =

∞∑

g=0

∞∑

n=1

1

n!
λ2g−2C

(g)
i1,··· ,in

xi1 · · · xin +

(
χ

24
− 1

)
log(λ), (6.2)

where C
(g)
i1,··· ,in

= 0 for 2g − 2 + n ≤ 0. The number χ is defined as the difference between

the numbers of the bosonic and fermionic modes; in the case of topological sigma-model it

coincides with the Euler characteristic of X (up to a sign).

The function W obeys the following holomorphic anomaly equations (Equation 3.17,

3.18, [2])

∂

∂t̄i
exp(W ) =

[
λ2

2
Cijke

2KGjj̄Gkk̄ ∂2

∂xj∂xk
− Gījx

j

(
λ

∂

∂λ
+ xk ∂

∂xk

)]
exp(W ), (6.3)

and
[

∂

∂ti
+Γk

ijx
j ∂

∂xk
+∂iK

(
χ

24
−1−λ

∂

∂λ

)]
exp(W ) =

[
∂

∂xi
−∂iF1−

1

2λ2
Cijkx

jxk

]
exp(W ).

(6.4)

One can modify the definition of W by introducing a new function W̃ ,

W̃ (λ, xi, ρ, t, t̄) =

∞∑

g=1

∞∑

n=1

1

n!
λ2g−2C

(g)
i1,··· ,in

xi1 · · · xinρ−n−(2g−2) +

(
χ

24
− 1

)
log ρ

= W

(
λ

ρ
,
x

ρ
, t, t̄

)
−

(
χ

24
− 1

)
log(λ). (6.5)

The function W̃ (we will call it BCOV wave function) satisfies the equations

∂

∂t̄i
exp(W̃ ) =

[
λ2

2
C

jk

ī

∂2

∂xj∂xk
+ Gījx

j ∂

∂ρ

]
exp(W̃ ), (6.6)

∂

∂ti
exp(W̃ ) =

[
ρ

∂

∂xi
− ∂iK

(
ρ

∂

∂ρ
+ xj ∂

∂xj

)
− Γk

ijx
j ∂

∂xk
−

1

2λ2
Cijkx

jxk

−∂iF1 − ∂iK

(
χ

24
− 1

)]
exp(W̃ ). (6.7)
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Equations (6.6) follows from (6.3); it is equivalent to the equation (6.11) of [2]. And

equation (6.7) follows from equation (6.4).

The above equations are valid for any topologically twisted N = 2 superconformal

theory coupled to gravity. We will apply them to the study of B-model. In this case, it is

clear from comparison of equations (6.6) with (4.6) that exp(W̃ ) can be interpreted as a

wave function corresponding to the complex hermitian polarization considered in section

3. The equation (6.6) implies that exp(W̃ ) is a projectively flat section. Let us emphasize

that exp(W̃ ) is a well defined function determined from worldsheet considerations and the

wave function is specified only up to a factor. Considering exp(W̃ ) as a wave function

we fix this factor. The fact that the wave function in complex hermitian polarization can

be considered as a one-valued function on the whole moduli space of complex structures

(monodromy transformations act trivially) was essentially used in [1]. Notice also that

the worldsheet interpretation of the wave function permits us to analyze its behavior at

boundary points of the moduli space; this information imposes further restrictions on the

quantum state obtained by quantization of genus zero theory.

The function W̃ (λ, x, ρ, t,∞) can be represented in terms of F (λ, t,∞) in the following

way

W̃ (λ, x, ρ, t,∞) =
∑

g

1

n!

(
λ

ρ

)2g−2

Fg

(
t +

x

ρ
,∞

)
− F1(t,∞) −

(
λ

ρ

)−2(
F0(t,∞)

+
∂F0(t,∞)

∂ti
·
xi

ρ
+

1

2

∂2F0(t,∞)

∂ti∂tj
·
xixj

ρ2

)
−

(
χ

24
− 1

)
log ρ

= F

(
λ

ρ
, t +

x

ρ
,∞

)
− F1(t,∞) −

(
λ

ρ

)−2(
F0(t,∞) +

∂F0(t,∞)

∂ti
·
xi

ρ
+

1

2

∂2F0(t,∞)

∂ti∂tj
·
xixj

ρ2

)
−

(
χ

24
− 1

)
log ρ (6.8)

(Due to the relation C
(g)
i1,··· ,in

= ∂i1 · · · ∂inFg(λ, t,∞), the expression for W̃ as t̄ → ∞ can be

considered as Taylor series; for g = 0 and g = 1 the first few terms of the Taylor series are

missing because one assumes that C
(g)
i1,··· ,in

= 0 for 2g − 2 + n ≤ 0.) Notice that the above

formula can be used both for A-model and for B-model (in the latter case ta are canonical

coordinates in the neighborhood of maximally unipotent boundary point).

As we have seen in the language of B-model, exp(W̃ (λ, x, ρ, t,∞)) can be interpreted

as a wave function in the complex hermitian polarization for t̄ = ∞. From the other side,

the complex hermitian polarization for t̄ = ∞ coincides with holomorphic polarization (see

appendix). This means that up to a t-dependent factor exp(W̃ (λ, x, ρ, t,∞)) coincides with

the wave function in holomorphic polarization.

Let us give another proof of this fact that permits us to calculate the t-dependent

factor.

We defined the wave function in holomorphic polarization as a solution to the equa-

tion (5.4). The function exp(W̃ (λ, x, ρ, t,∞)) obeys a little bit different equation (for

t̄ = ∞, we can take ∂aK = 0, Γk
aj = 0 in the equation (6.6)). Comparing these equations,
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we see that (up to a constant factor)

Ψ(λ, x, ρ, t) = exp(W̃ (λ, x, t, ρ,∞)) exp(F1). (6.9)

It follows from this expression that our function Ψ(λ, x, ρ, t) coincides with the modification

of BCOV wave function exp(W̃ (λ, x, t, ρ,∞)) considered in [11], [6].

Using the expression (6.8) of W̃ and (6.9), we have the following expression for Ψ

Ψ = exp

(
F

(
λ

ρ
, t +

x

ρ
,∞

)
− λ−2

(
F0(t,∞)ρ2 +

∂F0

∂ti
xiρ +

1

2

∂2F0

∂ti∂tj
xixj

)

−

(
χ

24
− 1

)
log(ρ)

)
. (6.10)

We use Equation (5.2) to compute the corresponding wave function in the real polarization

by identifying ρ = ε0, xi = εi.

Ψreal(ε
0, εi + tiε0, λ) = exp

(
F

(
λ

ε0
, ti +

εi

ε0
,∞

)
−

(
χ

24
− 1

)
log(ε0)

)
. (6.11)

Accordingly, if we set x0 = ε0 and xi = εi + tiε0, we have

Ψreal(x
0, xi, λ) = exp

(
F

(
λ

x0
,
xi

x0
,∞

)
−

(
χ

24
− 1

)
log(x0)

)
. (6.12)

It follows from this equation that

Ψreal(cx
0, cxi, cλ) = Ψreal(x

0, xi, λ)c−( χ
24

−1) (6.13)

Using (2.10) one can conclude that similar homogeneity property is valid in any po-

larization:

Ψ(cx, e, cλ) = Ψ(x, e, λ)c−( χ
24

−1) (6.14)

To clarify the physical meaning of exp(W̃ ), it is convenient to consider the mirror

A-model and to take the limit t̄ → ∞. Then the free energy Fg and therefore the functions

W and W̃ can be expressed in terms of Gopakumar-Vafa invariants n
g
β and topological

invariants of the mirror manifold X̃. Namely

F = lnΨ =
∑

g

λ2g−2Fg(t) = F ′ + F ′′ (6.15)

can be represented as a sum of two summands F ′ and F ′′ where F ′ corresponds to non-

trivial instanton contribution of the mirror A-model with the form

F ′ =
∑

n,g,β 6=0

n
g
β

1

m

(
2 sin

mλ

2

)2g−2

entβ , (6.16)

and the constant map contribution F ′′ can be represented as

F ′′ = const + λ−2
∑ tβ1tβ2tβ3

3!

∫

eX
β1 ∪ β2 ∪ β3 −

tβ

24

∫

eX
β ∪ c2(X̃). (6.17)
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In (6.16) we assume that β runs over the two-dimensional integral homology group of

X̃ (more precisely, only the elements in the positive cone of this group are relevant);

in (6.17) β runs over a basis of this group. Recall that the two-dimensional cohomology

group labels the deformations of Kähler structures on X̃; in the language of mirror B-

model it corresponds to the cohomology group H2,1(X) that labels deformations of complex

structures; the coordinates tβ correspond to canonical coordinates on the moduli space of

complex structures of the corresponding B-model.

Instead of free energy F = F ′ + F ′′ one can consider the partition function Z = eF

represented as a product of two factors Z ′ = eF ′
and Z ′′ = eF ′′

. By means of formal

manipulations (see [7]), one can derive from (6.16) the following expression2 for Z ′ :

Z ′ =
∏

(1 − Λsqβ)m
s
β (6.18)

where

ms
β = sn0

β + (−1)1+s
∑

g≥1+|s|

n
g
β

(
2g − 2

g − 1 − s

)
, (6.19)

Λ = e−iλ, (6.20)

qβ = exp tβ. (6.21)

Using the expression (6.9), we obtain an expression of the wave function in holomorphic

polarization:

Ψ(λ, x, ρ, t) = Ψ
′

Ψ
′′

,

where Ψ′ is expressed in terms of Gopakumar-Vafa invariants n
g
β with g ≥ 0. More precisely,

Ψ′(λ, x, ρ, t) = exp

( ∑

m,g≥1,β 6=0

n
g
β

1

m

(
2 sin

mλ

2ρ

)2g−2

e
m

(
tβ+ xβ

ρ

))

=
∏

s,β 6=0

(
1 − e

−is λ
ρ
+
(
tβ+ xβ

ρ

))ms
β
. (6.22)

A. Relation between complex hermitian polarization and holomorphic po-

larization

Here we relate the holomorphic polarization to the complex hermitian polarization.

Since both bases are expressed in terms of the real basis {gA, gA}, we can compute the

expression of {Ω,Ωa, Ω̃
a, Ω̃} by {e0, ea, e

a, e0} as follows.

Ω = e0,

Ωa = ea − ∂aKe0,

Ω̃ = ieKe0 + ieK(X
a
− Xa)ea + ∂aKea + e0, (A.1)

Ω̃a = Gab̄
[
− ieK∂bKe0 + ieKeb − ieK(X

c
− Xc)∂bKec

+(Gb̄c + ∂bK∂cK − ∂cK∂bK)ec
]

2To give a precise meaning to (6.18) one can consider this expression as an element of Novikov ring with

generators qβ and with coefficients in Laurent series with respect to Λ; the generators obey the relation

qβqβ′

= qβ+β′

.
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We recall that in the neighborhood of maximally unipotent boundary point, the func-

tion F0 has the following expression

F0(X
0,Xi) =

dijkX
iXjXk

X0
+ c(X0)2 + σ(qi),

where σ is a holomorphic function and qj def
= exp(2πitj). The expression σ(qi) is bounded

in the neighborhood of the boundary point qi = 0.

In the following computation, we set X0 = 1. Substituting the above expression of F0

into K = − log(i(X
A ∂F0

∂XA − XA ∂F0

∂XA )), we obtain

K = − log
(
i
(
d̄ijk t̄

it̄j t̄j − dijkt
itjtk + 3dijk t̄

itjtk − 3d̄ijkt
it̄j t̄k + 2(c − c̄) + ϕ

))
,

where ϕ is equal to

− log(qi)qi ∂σ

∂qi
+ log(q̄i)qi ∂σ

∂qi
+ log(q̄i)q̄i ∂σ

∂qi
− log(qi)q̄i ∂σ

∂qi
.

Differentiating K respect to ta, we have

∂aK =
3dajkt

jtk − 6daik t̄itk + 3d̄ajk t̄j t̄k − ∂aϕ

d̄ijk t̄it̄j t̄j − dijktitjtk + 3dijk t̄itjtk − 3d̄ijktit̄j t̄k + 2(c − c̄) + ϕ

Similarly,

∂aK =
3d̄ajk t̄

j t̄k − 6d̄aiktit̄k + 3dajkt
jtk − ∂aϕ

dijktitjtj − d̄ijk t̄it̄j t̄k + 3d̄ijktit̄j t̄k − 3dijk t̄itjtk + 2(c̄ − c) + ϕ
. (A.2)

Taking the derivative of ∂aK respect to t̄b, we obtain

∂̄b∂aK =
−6dbaktk + 6d̄abk t̄k

d̄ijk t̄it̄j t̄j − dijktitjtk + 3dijk t̄itjtk − 3d̄ijktit̄j t̄k + 2(c − c̄) + ϕ
+ (A.3)

−

(
3dajktjtk − 6daik t̄itk + 3d̄ajk t̄j t̄k + ∂aϕ

)(
3d̄bjk t̄

j t̄k − 6d̄biktit̄k + 3dbjkt
jtk

)
(
d̄ijk t̄it̄j t̄j − dijktitjtk + 3dijk t̄itjtk − 3d̄ijktit̄j t̄k + 2(c − c̄) + ϕ

)2

Also we have

eK =
1

e−K
=

1

i
(
d̄ijk t̄it̄j t̄j − dijktitjtk + 3dijk t̄itjtk − 3d̄ijktit̄j t̄k + 2(c − c̄) + ϕ

) .

Let us consider t and t̄ in these formulas as independent complex variables; then the

basis (Ω,Ωa, Ω̃
a, Ω̃) is not hermitian anymore. We will check that this basis tends to

(e0, ea, e
a, e0) as q̄ converges to 0 (and therefore t̄ → ∞) with fixed t.

Fixing t and taking t̄ → ∞, we have that

ϕ ∼ O(t̄), ∂aϕ ∼ O(t̄), ∂aϕ ∼ O(1),

where O(1) stands for bounded terms.

And therefore, we have the following asymptotic leading terms.
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1. ∂aK ∼ 3
d̄ajkt

j
t
k

d̄ijkt
i
t
j
t
k ;

2. ∂aK ∼ −3
d̄ajkt

j
t
k

d̄ijkt
i
t
j
t
k ;

3. Gab̄ ∼
6d̄abkt

k

d̄ijkt
i
t
j
t
k −

9d̄ajkd̄blmt
j
t
k
t
l
t
m

(d̄ijkt
i
t
j
t
k
)2

4. eK ∼ 1

id̄ijkt
i
t
j
t
k ;

5. ∂aK∂bK − ∂bK∂aK ∼

0
B@

diaj d̄bklX
i
t
k
t
l
tj + d̄aij d̄kblt

i
t
j
t
l
tk

−dibj d̄aklt
i
t
k
t
l
tj − d̄bij d̄kalt

i
t
j
t
l
tk

1
CA

d̄ijkdlmnt
i
t
j
t
k
t
l
t
m

t
n .

If we let t̄i = s̄iν and ν → ∞, we have the following asymptotic behavior (up to a

factor),

1. ∂aK ∼ 1
ν
;

2. ∂aK ∼ 1
ν
;

3. Gab̄ ∼
1
λ2 Lab̄, where Lab̄ is a nondegenerate anti-holomorphic matrix;

4. eK ∼ 1
ν3 ;

5. ∂aK∂bK − ∂bK∂aK ∼ 1
ν3 .

Substituting the above asymptotic expressions into Equation (A.1) and taking the limit

t̄ → ∞ by letting ν → ∞, we have

Ω = e0, Ωa = ea,

Ω̃ = e0, Ω̃a = ea.
(A.4)
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